

A Practical Example of Applying
Attribute-Driven Design (ADD),
Version 2.0

William G. Wood

February 2007

TECHNICAL REPORT
CMU/SEI-2007-TR-005
ESC-TR-2007-005

Software Architecture Technology Initiative
Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2007 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions
and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Abstract vii

1 Introduction 1
1.1 Summary of ADD 1
1.2 Example Process 2

2 System Definition 5
2.1 Functional Requirements 5
2.2 Design Constraints 6
2.3 Quality Attribute Requirements 6

3 Applying ADD 9
3.1 Step 1 of the ADD Method: Confirm There Is Sufficient Requirements Information 9
3.2 Results of the First ADD Iteration 9
3.3 Organizational Considerations 12

4 ADD Second Iteration 15
4.1 Step 1 of ADD: Confirm There Is Sufficient Requirements Information 15
4.2 Step 2 of ADD: Choose an Element of the System to Decompose 15
4.3 Step 3 of ADD: Identify Candidate Architectural Drivers 15
4.4 Step 4 of ADD: Choose a Design Concept that Satisfies the Architectural Drivers 16

4.4.1 Step 4, Substep 1 of ADD: Identify Design Concerns 17
4.4.2 Step 4, Substep 2 of ADD: List Alternative Patterns for Subordinate Concerns 18
4.4.3 Step 4, Substep 3 of ADD: Select Patterns from the List 21
4.4.4 Step 4, Substep 4 of ADD: Determine Relationship Between Patterns and

Drivers 25
4.4.5 Step 4, Substep 5 of ADD: Capture Preliminary Architectural Views 26
4.4.6 Step 4.6 of ADD: Evaluate and Resolve Inconsistencies 28

4.5 Step 5 of ADD: Instantiate Architectural Elements and Allocate Responsibilities 32
4.5.1 Primary A and B 32
4.5.2 Persistent Storage 32
4.5.3 Health Monitor 32
4.5.4 Asynchronous Communication 32
4.5.5 Synchronous Communication 33
4.5.6 Proxy 33
4.5.7 Update Clients 33
4.5.8 Query Client 33

4.6 Step 7 of ADD: Verify and Refine Requirements and Make Them Constraints 34
4.7 Step 8 of ADD: Repeat Steps 2 through 7 for the Next Element of the System You Wish

to Decompose 36

5 Summary of the Architecture 37
5.1 Architecture Summary 37
5.2 Design Issues Being Resolved Elsewhere 38
5.3 Remaining Design Issues 38

 SOFTWARE ENGINEERING INSTITUTE | i

6 Comments on the Method 39

7 Conclusion 41

Glossary 43

Bibliography 47

ii | CMU/SEI-2007-TR-005

List of Figures

Figure 1: Steps of ADD 2

Figure 2: Functional Overview 5

Figure 3: Software Element Primary Connectivity 10

Figure 4: Software Element View of the Architecture 27

Figure 5: A Sequence Diagram of Failover from A to A’ 28

Figure 6: Timing Model 29

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2007-TR-005

List of Tables

Table 1: Quality Attribute Scenario 1: Quick Recovery 6

Table 2: Quality Attribute Scenario 2: Slow Recovery 7

Table 3: Quality Attribute Scenario 3: Restart 7

Table 4: Deployment Characteristics 10

Table 5: Persistent Storage Elapsed Time 11

Table 6: Elements After Iteration 1 12

Table 7: Architectural Driver Priorities 16

Table 8: Design Concerns 17

Table 9: Restart Patterns 18

Table 10: Deployment Patterns 18

Table 11: Data Integrity Patterns 19

Table 12: Fault Detection Patterns 19

Table 13: Transparency Patterns 20

Table 14: Patterns for Update Client Behavior After a Hard Failure 20

Table 15: Patterns for Query Client Behavior After a Hard Failure 21

Table 16: Pattern/Driver Mapping 25

Table 17: System Elements and the ADD Iteration in Which They’re Developed 26

Table 18: Summary of Timing Decisions 31

Table 19: Summary of Interfaces 34

Table 20: Architectural Drivers 35

 SOFTWARE ENGINEERING INSTITUTE | v

vi | CMU/SEI-2007-TR-005

Abstract

This report describes an example application of the Attribute-Driven Design (ADD) method de-
veloped by the Carnegie Mellon® Software Engineering Institute. The ADD method is an ap-
proach to defining a software architecture in which the design process is based on the quality at-
tribute requirements the software must fulfill. ADD follows a recursive process that decomposes a
system or system element by applying architectural tactics and patterns that satisfy its driving
quality attribute requirements.

The example in this report shows a practical application of the ADD method to a client-server
system. In particular, this example focuses on selecting patterns to satisfy typical availability re-
quirements for fault tolerance. The design concerns and patterns presented in this report—as well
as the models used to determine whether the architecture satisfies the architectural drivers—can
be applied in general to include fault tolerance in a system. Most of the reasoning used throughout
the design process is pragmatic and models how an experienced architect works.

 SOFTWARE ENGINEERING INSTITUTE | vii

viii | CMU/SEI-2007-TR-005

1 Introduction

This report describes the practical application of the Attribute-Driven Design (ADD) method de-
veloped by the Carnegie Mellon® Software Engineering Institute (SEI). The ADD method is an
approach to defining a software architecture in which the design process is based on the quality
attribute requirements the software must fulfill. ADD follows a recursive process that decomposes
a system or system element by applying architectural tactics and patterns that satisfy its driving
quality attribute requirements.

The example in this report applies ADD to a client-server system to satisfy several architectural
drivers, such as functional requirements, design constraints, and quality attribute requirements. In
particular, this example focuses on selecting patterns to satisfy typical availability requirements
for fault tolerance. The design concerns and patterns presented in this report—as well as the mod-
els used to determine whether the architecture satisfies the architectural drivers—can be applied in
general to include fault tolerance in a system. Most of the reasoning used throughout the design
process is pragmatic and models how an experienced architect works.

1.1 SUMMARY OF ADD

This example follows the most current version of the ADD method as described in the companion
technical report, Attribute-Driven Design (ADD) Version 2.0 [Wojcik 2006].1 The eight steps of
the ADD method are shown in Figure 1 on page 2.

Each step in the method is described in Section 4 of this report, “ADD Second Iteration.” How-
ever, the method can be summarized as follows:

• Step 1 verifies that there are sufficient requirements. It requires that the architectural drivers
(functional requirements, design constraints, and scenarios) are prioritized by the stake-
holders before proceeding. However, in the example we’re using, the details of the first itera-
tion are missing. The prioritization of the architectural drivers is shown in Step 3 of the sec-
ond iteration.

• Steps 2 through 7 are completed sequentially for each iteration. First, we choose an element
to decompose (Step 2), and then we step through the process to complete the design. These
steps are shown individually in Section 4 of this report.

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

1 The book Software Architecture in Practice first detailed the ADD method [Bass 2003, p. 155–166].

 SOFTWARE ENGINEERING INSTITUTE | 1

All requirements are well formed
and prioritized by stakeholders

Step 2: Choose an element of the system to
decompose

Step 3: Identify candidate architectural
drivers

Step 4: Choose a design concept that
satisfies the architectural drivers

Step 6: Define interfaces for instantiated
elements

Step 5: Instantiate architectural elements
and allocate responsibilities

Step 7: Verify and refine requirements and
make them constraints for instantiated

elements

Step 1: Confirm there is
sufficient requirements

information
St

ep
 8

: R
ep

ea
t a

s
ne

ce
ss

ar
y

Key

 Process
step

 Input/output
artifact

Quality attribute
requirements

Functional
requirements

Design
constraints

Software
architecture

design

Figure 1: Steps of ADD2

1.2 EXAMPLE PROCESS

In the design of large-scale systems, many design activities occur in parallel with each parallel
activity developing a portion of the architecture. These separate design pieces must be merged
(and possibly changed) to create a consistent and complete architecture that meets all the stake-
holder requirements.

In our example, we assume that the architecture team has already conducted the first iteration of
ADD and developed an overview of the architecture. The results of that first iteration include
placeholders for “fault-tolerance services” and other services such as “start-up services” and “per-
sistent storage services.” In Section 2 of this report, we sketch out the first iteration results to help
explain the resulting architecture.

2 This figure is copied from Wojcik’s work [Wojcik 2006].

2 | CMU/SEI-2007-TR-005

For the second iteration, the architecture team assigns the “fault-tolerance services” design re-
quirement to a fault-tolerance expert for further refinement. This iteration, which focuses on the
“fault-tolerance services” system element, is discussed in detail in Section 4. In that section, we
also review the different fault-tolerance concerns, alternative design patterns, and the reasoning
used to select among the alternatives to satisfy the architectural drivers. In this selection process,
we must satisfy an end-to-end timing deadline starting with the failure and ending with a fully
recovered system. To this end, we build a timing model to use as an analysis tool. Recall that we
are drafting an architecture that satisfies the requirement that an end-to-end timing scenario be
met when a fault occurs; however, we are not trying to build a complete architecture at this stage.
The results of this iteration will be merged with the designs of other parallel activities.

The fault-tolerance expert is given some leeway in not satisfying all the architectural drivers. The
expert may return to the architecture team and request relief from specific architectural drivers, if
they force the solution space to use complex patterns that are difficult to implement. The architec-
ture team has the opportunity to revisit some of the requirements given to the fault-tolerance ex-
pert, make changes, and allow the expert to find a more reasonable solution.

When fault tolerance is being addressed, existing services may be used in some cases, such as a
health monitoring or warm restart service using a proxy. These on-hand services can become de-
sign constraints and cause the architect to make fewer design choices. In our example, however,
we include the full range of design choices.

Overall, our approach to introducing fault tolerance is general and may be used as a template for
designing fault-tolerance architectures.

 SOFTWARE ENGINEERING INSTITUTE | 3

4 | CMU/SEI-2007-TR-005

2 System Definition

This section describes the basic client-server system in our example. We are designing its archi-
tecture in terms of three architecture requirements: functional requirements, design constraints,
and quality attribute requirements.

2.1 FUNCTIONAL REQUIREMENTS

Figure 2 depicts a functional overview of our client-server example.

Figure 2: Functional Overview

The Track Manager provides a tracking service for two types of clients:

• update clients: These clients send track updates to the Track Manager periodically. The
Track Manager can tolerate some occasional loss of updates, especially during transient con-
ditions caused by equipment failure. All update clients perform an update every second, and
the Track Manager can recover from two missed update signals when it receives the third
signal. If more than two signals are missed, the operator may have to assist the Track Man-
ager in the recovery process. In other words, if a failure occurs, the processing must restart
before two seconds have elapsed in order to avoid operator intervention.

• query clients: These clients operate sporadically and must receive exactly one reply to their
query. Query clients can be dissimilar with some clients requesting small chunks of data of-
ten (e.g., several kilobytes with five seconds between queries from a single client) and others
requesting large chunks of data occasionally (e.g., several megabytes with minutes between

 SOFTWARE ENGINEERING INSTITUTE | 5

queries). The response time for queries should be less than double the normal response time
for a particular query.

2.2 DESIGN CONSTRAINTS

Three design constraints are required:

1. capacity restrictions: The provided processors shall have 50% spare processor and memory
capacity on delivery, and the local area network (LAN) has 50% spare throughput capability.
There are 100 update clients and 25 query clients. For the purposes of timing estimates, as-
sume that there are 100 updates and 5 queries per second.

2. persistent storage service: This service will maintain a copy of state that is checked at least
once per minute by the Track Manager. If all replicas of the Track Manager fail, a restart can
begin from the checkpoint file.

3. two replicas: To satisfy the availability and reliability requirements, a Reliability, Availabil-
ity, and Maintainability (RMA) study has been conducted, and the Track Manager and per-
sistent storage elements shall all have two replicas operating during normal circumstances.

2.3 QUALITY ATTRIBUTE REQUIREMENTS

The system stakeholders agree on three quality attribute scenarios that describe the various system
responses to failures. These scenarios are described in Tables 1–3.

Table 1: Quality Attribute Scenario 1: Quick Recovery
Element Statement

Stimulus A Track Manager software or hardware component fails.

Stimulus source A fault occurs in a Track Manager software or hardware
component.

Environment Many software clients are using this service. At the time of
failure, the component may be servicing a number of cli-
ents concurrently with other queued requests.

Artifact Track Manager

Response All query requests made by clients before and during the
failure must be honored.

Update service requests can be ignored for up to two sec-
onds without noticeable loss of accuracy.

Response measure The secondary replica must be promoted to primary and
start processing update requests within two seconds of the
occurrence of a fault.

Any query responses that are underway (or made near the
failure time) must be responded to within three seconds of
additional time (on average).

6 | CMU/SEI-2007-TR-005

Table 2: Quality Attribute Scenario 2: Slow Recovery
Element Statement

Stimulus A Track Manager hardware or software component fails
when no backup service is available.

Stimulus source An error occurs in a Track Manager software or hardware
component.

Environment A single copy of the Track Manager is providing services
and it fails.

A spare processor is available that does not contain a copy
of this component.

A copy of the component is available on persistent storage
and can be transferred to the spare processor via the LAN.

Artifact Track Manager

Response The clients are informed that the service has become
unavailable.

A new copy of the service is started and becomes opera-
tional. The state of the component on restart may differ
from that of the failed component but by no more than one
minute.

The clients are informed that the service is available to
receive update signals.

For some tracks, the new updates can be automatically
correlated to the old tracks. For others, an administrator
assists in this correlation. New tracks are started when
necessary.

The clients are then informed that the service is available
for new queries.

Response measure The new copy is available within three minutes.

Table 3: Quality Attribute Scenario 3: Restart
Element Statement

Stimulus A new replica is started as the standby.

Stimulus source The system resource manager starts the standby.

Environment A single replica is servicing requests for service under
normal conditions. No other replica is present.

Artifact New replica of the Track Manager

Response The initialization of the new replica has a transient impact
on service requests that lasts for less than two seconds.

Response measure The initialization of the new replica has a transient impact
on service requests that lasts for less than two seconds.

 SOFTWARE ENGINEERING INSTITUTE | 7

8 | CMU/SEI-2007-TR-005

3 Applying ADD

It takes at least two iterations through the ADD process to develop an architecture that satisfies
the architectural requirements of a proposed system. As shown in Figure 1 on page 2, Step 1 (de-
scribed below) is conducted only once to ensure that the information you have about the require-
ments is sufficient. We do not discuss the design steps in the first iteration, since our primary in-
terest is in fault tolerance. The architecture team created the architectural views shown in Figure 3
and outlined in Section 3.2. A “fault-tolerance services” element is included in this view. This
element is assigned to a fault-tolerance expert for design in parallel with some other designs (for
example, start-up services), which we do not describe here. The fault-tolerance expert proceeds
with the second iteration of the ADD method and decomposes different aspects of the fault-
tolerance services.

3.1 STEP 1 OF THE ADD METHOD: CONFIRM THERE IS SUFFICIENT REQUIREMENTS
INFORMATION

Section 2 (see page 5) lists the requirements for the example, which consist of functional require-
ments, design constraints, and quality attribute requirements.

3.2 RESULTS OF THE FIRST ADD ITERATION

The architecture team conducts the first iteration. This iteration uses a set of architectural drivers
consisting of the highest priority requirements, scenarios, and their associated design constraints.
These architectural drivers, the details of the team’s reasoning, and the requirements gleaned dur-
ing Step 1 are not included here. The resulting architecture is shown in Figure 3 and further de-
scribed in the rest of this section. In addition, the software elements are summarized in Table 6 on
page 12.

1. Our design uses a client-server model where the Track Manager provides services to the up-
date and query clients. Only the primary connectors are shown in the diagram; to simplify it,
some secondary interfaces are not shown (for example, all clients, Track Manager elements,
and most services would have connectors to the naming service).

2. The Track Manager has been broken into two elements: A and B. This decomposition allows
two deployment strategies to be considered:

• Strategy 1: Both elements (A and B) operate in a single processor, P1. A and B to-
gether consume 50% of the processor duty cycle to handle 100 updates and 30 queries.
This strategy satisfies the system performance requirements.

• Strategy 2: Element A is in processor P1, and element B is in processor P2. Together,
they can handle 150 update clients and 50 query clients. This strategy exceeds the sys-
tem performance requirements.

 SOFTWARE ENGINEERING INSTITUTE | 9

Figure 3: Software Element Primary Connectivity

The results of analyzing these design strategies are shown in Table 4. Communication system
bandwidth increases by 2% when the components are placed in different processors.

Table 4: Deployment Characteristics
 P1 P2 #Updates #Queries P1 Load P2 Load

Strategy 1 A, B 100 30 50% N/A

Strategy 2 A B 150 50 50% 30%

3. The communication mechanisms between the update and query clients and the Track Man-
ager differ:

• Update clients use an asynchronous communication mechanism. They send an update
message, receive no reply, and are not suspended while the message is being delivered.
(If a publish/subscribe service were available, it would be used instead.)

• Query clients use a synchronous communication mechanism. They make a service
request and are suspended until they receive the reply.

4. Elements A and B both contain state data that must be saved as a checkpoint in persistent
storage. The elapsed times taken to copy the state to and recover the state from persistent
storage are identical (see Table 5).

10 | CMU/SEI-2007-TR-005

Table 5: Persistent Storage Elapsed Time

Component Time

1 A 0.8 seconds

2 B 0.6 seconds

5. A middleware naming service accepts the name of a requested service and returns an access
code for the service.

6. A middleware registration service refuses service to new clients if providing it would cause
persistent storage to exceed its spare capacity limit. For simplicity’s sake, the connections
among clients and this service are not shown in Figure 3.

7. A separate team is assigned to consider the start-up of the Track Manager elements. The in-
teractions between the initial designs of the start-up and fault-tolerance services will be re-
solved after both designs have been completed.

8. Both A and B register their interfaces with the naming service. Once again, for simplicity’s
sake, the connections among the functions and this service are not shown in Figure 3.

9. What happens when a service is requested from A or B for the first time depends on which
type of client is making the request:

• When an update client is making the request, the request goes directly from A or B to
the asynchronous communication service and then to the naming service to get the
handle for the service. (At this point, the communication mechanism caches that han-
dle, so it doesn’t have to go and get it again the next time it receives a request for that
service.) Then, the communication service sends the request to A or B, appropriately.
The update client can continue operation without waiting for a reply.

• When a query client is making the request, the request goes directly from A or B to the
synchronous communication service and then to the naming service to get the handle
for the service. (At this point, the communication mechanism caches that handle, so it
doesn’t have to go and get it again the next time it receives a request for that service.)
Then, the communication service sends the request to A or B, appropriately, and waits
until it receives a reply. Once it does, it sends the reply to the query client. During this
whole time, the query client is blocked from execution until it receives that reply.

10. The team decides to have a fault-tolerance expert refine the fault-tolerance placeholder. In
fact, they suspect that the fault-tolerance placeholder is a notional concept that will permeate
the system—not only will new modules have to be added, but changes to the functionality
and module interfaces will also have to be made. At this point, they do not know which
modules will be affected. The modules already defined, which include the placeholder (PH1)
for the fault-tolerance services, are listed in Table 6.

 SOFTWARE ENGINEERING INSTITUTE | 11

Table 6: Elements After Iteration 1
Element Fault-Tolerance

Class (Yes/No)
Allocation of
Architectural Drivers

1 Track Manager Yes N/A

2 Query clients No N/A

3 Update clients No N/A

4 Persistent storage Yes N/A

5 Track Manager A Yes Requirement 1, 3

6 Track Manager B Yes Requirement 1, 3

7 Synchronous communication Yes N/A

8 Asynchronous communication Yes N/A

9 Naming service Yes N/A

10 Registration service Yes N/A

PH1

Fault-tolerance service
elements

Unknown Requirement 5
Scenario 1, 2, 3
ADD iteration 1: #1, #3

The fault-tolerance expert is told to concentrate on the fault-tolerance service elements as they
apply to the Track Manager elements. After this task has been completed and approved by the
architecture team, the fault-tolerance considerations for the other elements, such as synchronous
communications, can proceed. These elements may or may not use the same services as the Track
Manager. The design of making the other elements fault tolerant is not considered here.

3.3 ORGANIZATIONAL CONSIDERATIONS

The architecture team decides to consider how to make the Track Manager fault tolerant before
creating a general approach to fault tolerance. The team asks an architect with experience in fault
tolerance to take this placeholder and develop a fault-tolerance architecture using these five guide-
lines:

• Use the requirements, the existing design of the critical element, and the scenarios as the
architectural drivers for adding fault tolerance to the Track Manager.

• If, according to the fault-tolerance expert, the architectural drivers are forcing an overly
complex solution, return to the architecture team with proposals to relax one or more of
those drivers. The team will make the tradeoff decisions needed to achieve a simpler solu-
tion.

• Capture the rationale for the fault-tolerance architecture and the alternatives that were con-
sidered. Details about each alternative are not necessary—just the rationale used when
choosing between the options.

• Don’t try to address the start-up concerns. Another design team is tackling that problem. The
start-up and fault-tolerance solutions will be merged at a later stage.

12 | CMU/SEI-2007-TR-005

• Important: Remember that your design is preliminary and will be merged with other de-
signs proceeding in parallel. Do not develop a complete design. Stop when you are confident
that your approach will satisfy the architectural drivers; for example, do not build a complete
set of sequence diagrams or other UML diagrams.

 SOFTWARE ENGINEERING INSTITUTE | 13

14 | CMU/SEI-2007-TR-005

4 ADD Second Iteration

4.1 STEP 1 OF ADD: CONFIRM THERE IS SUFFICIENT REQUIREMENTS
INFORMATION

This step is not necessary during each iteration. It was done once at the beginning of the ADD
process.

4.2 STEP 2 OF ADD: CHOOSE AN ELEMENT OF THE SYSTEM TO DECOMPOSE

The fault-tolerance services element is chosen as the system element to decompose. Specifically,
the Track Manager is targeted, since it is the system’s primary element. As you can see in Table 7,
other elements in the system must also be fault tolerant; however, the design team wanted to know
the architectural impact of making the Track Manager fault tolerant before considering the other
elements. This decision, of course, could lead to backtracking in later ADD iterations if a different
scheme is needed to add fault tolerance to the other elements.

4.3 STEP 3 OF ADD: IDENTIFY CANDIDATE ARCHITECTURAL DRIVERS

Ten drivers and their priorities are listed below in Table 7. Seven drivers are identified from the
initial pool of architecture requirements. Three are identified from the design constraints resulting
from the first iteration of ADD.

Consider the following points as you read Table 7:
• Drivers labeled (high, high) bear directly on the end-to-end timing requirement of two sec-

onds in scenario 1. This condition is the most difficult to satisfy and has the highest priority
drivers.

• Drivers labeled (medium, medium) are associated with the timing when a single copy of the
Track Manager is operating, and restoration should occur within two minutes.

• The restart scenario is least important, and a separate “start-up” design effort is considering
its details. Hence, #3 drivers do not impact the design and are crossed out in the table. As a
result, only nine architectural drivers should be considered.

 SOFTWARE ENGINEERING INSTITUTE | 15

Table 7: Architectural Driver Priorities
Architectural

Drivers
Section
Discussed In

Importance Difficulty

1 Scenario 1
Quick Recovery

2.3 high high

2 Scenario 2
Slow Recovery

2.3 medium medium

3 Scenario 3
Restart

2.3 low low

4 Requirement 1
Track Manager Functionality

2.1 high high

5 Design Constraint 1
Capacity Restrictions

2.2 high high

6 Design Constraint 2
Persistent Storage Service

2.2 medium low

7 Design Constraint 3
Two Replicas

2.2 high high

8 ADD Step 1, #2
Deployment Characteristics

3.2 high high

9 ADD Step 1, #3
Communication Mechanisms

3.2 high low

10 ADD Step 1, #4
Checkpoint Timing

3.2 high high

4.4 STEP 4 OF ADD: CHOOSE A DESIGN CONCEPT THAT SATISFIES THE
ARCHITECTURAL DRIVERS

This step is the first design step in the ADD method.

Note: This section cross-references Section 7.1 of the SEI technical report titled Attribute-Driven
Design (ADD), Version 2.0 [Wojcik 2006]. This step is the heart of that document; it’s where
most of the design alternatives are listed, the preferred patterns are selected, an evaluation is done
to validate the design, and changes are made to correct for detected deficiencies. Within Section
7.1, there are six enumerated paragraphs. To simplify your cross-referencing, each of those para-
graphs is referred to in the headings of this report as ADD substep 1, 2…and so forth.

16 | CMU/SEI-2007-TR-005

4.4.1 Step 4, Substep 1 of ADD: Identify Design Concerns

The three design concerns associated with fault-tolerance services are3

• fault preparation: This concern consists of those tactics performed routinely during normal
operation to ensure that when a failure occurs, a recovery can take place.

• fault detection: This concern consists of the tactics associated with detecting the fault and
notifying an element to deal with the fault.

• fault recovery: This concern addresses operations during a transient condition—the time
period between the fault occurrence and the restoration of normal operation.

Table 8 shows these concerns and their breakdown into subordinate concerns, the sections in this
report where the alternate patterns are listed and the selections are made.

Table 8: Design Concerns

Design Concerns Subordinate
Concerns

Alternative
Patterns Section

Selecting Design
Pattern Section

Restart 4.4.2.1 4.4.3.1

Deployment 4.4.2.2 4.4.3.2

Fault Preparation

Data integrity 4.4.2.3 4.4.3.3

Fault Detection Health monitoring 4.4.2.4 4.4.3.4

Transparency to
clients

4.4.2.5 4.4.3.5

Start new replica 4.4.2.6 4.4.3.6

Update client
behavior after transient
failure

4.4.2.7 4.4.3.7

Update client
behavior after hard
failure

4.4.2.8 4.4.3.8

Query client behavior
after transient failure

4.4.2.9 4.4.3.9

Fault Recovery

Query client behavior
after hard failure

4.4.2.10 4.4.3.10

3 We derived these concerns from the book titled Software Architecture in Practice Second Edition [Bass 2003, p. 101–

105]. That book also notes a fault prevention concern, but it was not needed in our example.

 SOFTWARE ENGINEERING INSTITUTE | 17

4.4.2 Step 4, Substep 2 of ADD: List Alternative Patterns for Subordinate Concerns

4.4.2.1 Restart

Four design alternatives for restarting a failed component are shown below in Table 9. Two dis-
criminating parameters are related to these patterns:
• the downtime that can be tolerated after failure (scenario 1)

• the manner in which the system treats requests for services in the time interval around the
failure time; for example, if it honors them and degrades the response time or it drops them
(scenario 1)

Table 9 also lists “reasonable” downtime estimates (based on experience) of these discriminating
parameters.

Table 9: Restart Patterns
Pattern Name Replica Type Downtime

Estimates
Loss of
Services

1 Cold Restart Passive > 2 minutes Yes

2 Warm Standby Passive > 0.3 seconds Perhaps

3 Master/Master Active > 50 milliseconds No

4 Load Sharing Active > 50 milliseconds No

4.4.2.2 Deployment

The two components can be deployed with (1) both primaries on one processor and both seconda-
ries on the second processor or (2) each primary on a different processor. The primaries are de-
noted by A and B; the secondaries by A’ and B’. The failure condition for B mimics that of A and
is not recorded in the table.

The two discriminating parameters are
• the downtime that can be tolerated after failure (scenario 1)

• the support of 100 update clients and 25 query clients (requirement 2)

Table 10: Deployment Patterns
Pattern

Name
P #1 P #2 A Fails # Updates # Queries State

Recovery Time

1 Together A, B A’, B’ A’, B’ 100 30 1.4

2 Apart A, B’ A’, B A’, B 150 50 0.8

4.4.2.3 Data Integrity

The data integrity tactic ensures that when a failure occurs, the secondary has sufficient state in-
formation to proceed correctly. The patterns are shown in Table 11.

18 | CMU/SEI-2007-TR-005

Table 11: Data Integrity Patterns
Pattern Name Communication

Loading
Standby
Processor
Loading

1 Slow Checkpoint 1.2 seconds every
minute

None

2 Fast Checkpoint 1.2 seconds every 2
seconds

None

3 Checkpoint + Log Changes 1.2 seconds per minute
+ 100 messages per
second

None

4 Checkpoint + Bundled Log
Changes

1.2 seconds per minute
+ 1 message per x sec-
onds

None

5 Checkpoint + Synchronize Primary
and Backup

1.2 seconds every
minute
+ 1 message per x sec-
onds

Execute to keep
an updated copy
of the state

4.4.2.4 Health Monitoring

A single health monitoring tactic should be considered for fault detection. Table 12 lists the pat-
terns to consider and their discriminating parameters.

Table 12: Fault Detection Patterns
Pattern Name Communication Line Loading

1 Heartbeat 4 messages (for A, A’, B, B’)

2 Ping/Echo 8 messages
(ping and echo for A, A’, B, B’)

3 Update Client Detects Failure 0 messages

4 Query Client Detects Failure 0 messages

4.4.2.5 Transparency to Clients

We list three alternatives to make faults transparent to the clients in Table 13 below. Pattern 1 has
no transparency, but patterns 2 and 3 provide transparency.

 SOFTWARE ENGINEERING INSTITUTE | 19

Table 13: Transparency Patterns

Pattern Name Protocol Required Timeout Location

1 Client Handles Failure Unicast Client

2 Handles Failure Proxy Unicast Proxy

3 Infrastructure Handles
Failure

Multicast Within the infrastructure

4.4.2.6 Start New Replica

This step is postponed, since it is closely related to the start-up mechanism that is being explored
by another team.

4.4.2.7 Update Client Behavior After Transient Failure

The operation of the proxy service when a transient failure occurs has already been defined: The
health monitor informs the proxy service of the failure. Then, this service sends a new secondary
access code to each asynchronous communication mechanism. This access code will be used for
the next update request. Essentially, this mechanism promotes the secondary to the primary.

4.4.2.8 Update Client Behavior After a Hard Failure

When a primary fails and no secondary is available, one of the design patterns in Table 14 could
be used.

Table 14: Patterns for Update Client Behavior After a Hard Failure
Pattern Name Impact

1 Continue to Send Updates Unusable data is sent.

2 Stop Sending Updates The communication line
loading during downtime
is saved.

3 Save Updates in a File Larger messages are
loaded on start-up.

4.4.2.9 Query Client Behavior After Transient Failure

The operation of the proxy service when such a failure occurs has already been defined: The
health monitor informs the proxy service of the failure. Then, this service sends a new secondary
access code to each synchronous communication mechanism. If no outstanding service request is
underway, the mechanism will use this access on the next request. If a service request is under-
way, a new request will be issued to the new access code. It is possible for the synchronous com-
munication to receive multiple replies (a delayed one from the primary and one from the pro-
moted secondary). It must be able to discard the second reply.

20 | CMU/SEI-2007-TR-005

4.4.2.10 Query Client Behavior After a Hard Failure

When a primary fails and no secondary is available, the query clients will be informed and can
adjust their behavior appropriately. In that case, one of the design patterns in Table 15 could be
used.

Table 15: Patterns for Query Client Behavior After a Hard Failure
Pattern Name Impact

1 Continue to Send Queries Unusable data is sent.

2 Stop Sending Queries The communication line
loading during downtime
is saved.

3 Save Queries in a File Larger messages are
loaded on start-up.

4.4.3 Step 4, Substep 3 of ADD: Select Patterns from the List

This activity involves selecting a pattern from the list for each set of alternative patterns. When
making your selection, you reason about which alternative is most suitable. In our example, the
selections were made independently. In some cases, reasonable values were chosen as design pa-
rameters, such as heartbeat and checkpoint frequencies. In the rest of this section, we consider
restart, deployment, data integrity, fault detection, transparency to client, start new replica, and
client behavior after transient and hard failures. For each item, we record our reasoning, decision,
and the implications of that decision.

The ADD method calls for the development of a matrix showing the interrelationships between
patterns and their pros and cons on each architectural driver. It assumes that there will be a rea-
sonable number of possible patterns and that a table is a good way to show the alternatives. Un-
fortunately, the inclusion of all fault tolerances as a single Step-4 design decision creates a total of
23 patterns—too many to represent in a single table. Hence, each alternative (restart, deployment,
etc.) is considered separately. The pros and cons in the table are considered in separate sections
below. Each section has three parts: (1) a reasoning paragraph describing the pros and cons for
each pattern, (2) a decision statement emphasizing the pattern chosen, and (3) an implication
statement showing the impact of this decision, including any obvious restrictions on choices not
yet made.

4.4.3.1 Restart

Reasoning

Both scenario 1 and requirement 1 indicate that the restart time must be less than two seconds;
thus, Cold Restart pattern is inappropriate (see Table 9 on page 18). The Warm Standby pattern
seems to easily satisfy the timing requirement described in scenario 1. Hence it is chosen, since it
is simpler to implement than the Master/Master or Load Sharing patterns.

Decision

Use the Warm Standby pattern.

 SOFTWARE ENGINEERING INSTITUTE | 21

Implications
1. A primary Track Manager for each component (A and B) receives all requests and responds

to them.

2. A secondary (standby) Track Manager for each component (A’ and B’) is loaded on another
processor and takes up memory.

4.4.3.2 Deployment

Reasoning

The architect is familiar with having a single failover scheme for recovery from a software or
hardware failure. Hence, he chooses the first Together pattern (see Table 10 on page 18), even
though it has a slower recovery time since the states for both A and B must be read from persis-
tent storage, rather than just A. This pattern meets the processing requirements, although it can
perform less processing. Note that the granularity of recovery differs from the granularity of fail-
ure, in that A and B must both recover when either one fails.

Decision

Use the Together pattern with both primary components that share a processor. Clearly, this op-
tion is suboptimal, since it offers reduced capability and increased recovery time. However, it was
chosen for reasons of familiarity.

Implications
1. The primary components (A and B) share a processor, as do the secondary components (A’

and B’).

2. The system will never be operational with the primary components in different processors.

4.4.3.3 Data Integrity

Refer to Table 11, “Data Integrity Patterns,” on page 19.

Reasoning
1. Clearly a checkpoint of state every minute is needed to satisfy scenario 2. However, a state

that is one minute old cannot satisfy scenario 1, since one minute’s worth of upgrades will be
ignored if only the checkpoint is used on restart. Pattern 1 is rejected.

2. Pattern 2 would satisfy the upgrade requirements of scenarios 1 and 2; however, it places an
unacceptable load on the communication system. Pattern 2 is rejected.

3. Pattern 3 would satisfy scenarios 1 and 2, but—like pattern 2—it places a significant burden
on the communication system. Pattern 3 is rejected.

4. Pattern 4 satisfies scenarios 1 and 2 if x is less than two seconds. It also puts a more reason-
able load on the communication system. Having a bundled upgrade periodicity of two sec-
onds appears to be satisfactory, though a more detailed check can be made later (see Section
5). Pattern 4 is ultimately selected.

5. Pattern 5 also satisfies the scenarios but is more complex, since the secondary must execute
every x seconds to update its copy of the state. Recovery would be faster, though, since it
would not need to read in a checkpoint of the state. Pattern 5 is rejected due to its complex-
ity.

22 | CMU/SEI-2007-TR-005

Decision

Use the Checkpoint + Bundled Log Changes pattern. The log files will be used as the basis for
promoting the new primary.

Implications
1. The primary replica saves the state to a persistent CheckpointFile every minute.

2. The primary keeps a local bundled file of all state changes for two seconds. The primary
sends it as a LogFile every two seconds.

3. The promoted primary reads in the CheckpointFile after it is promoted. Then it reads the
LogFile and updates each state change as it is read.

4. Next, the promoted secondary writes the newly updated state to persistent storage.

5. The promoted secondary can now start processing updates and queries without waiting until
the persistent state update has been completed.

4.4.3.4 Fault Detection

Reasoning

An approach where the clients do not detect failure is preferable, since it implies that the applica-
tion developers must understand the fault-tolerance timing requirements. In comparing the two
approaches (see Table 12 on page 19), the ping/echo fault detection is more complex than the
heartbeat detection and requires twice the bandwidth.

Decision

Use the Heartbeat pattern. We set the heartbeat at 0.25 seconds, which yields four communication
messages per second.

Implications
1. The heartbeat must be fast enough to allow the secondary to become initialized and start

processing within two seconds after a failure occurs. Initializing the two checkpoint files
takes 1.2 seconds. The heartbeat adds an additional 0.25 seconds, leaving 0.55 seconds spare,
which seems reasonable.

2. A health monitoring element checks for the heartbeat every 0.25 seconds. When a heartbeat
is not detected, the health monitor informs all the necessary elements.

3. If a primary Track Manager component detects an internal failure, the mechanism for com-
municating the failure is to not issue the heartbeat.

4.4.3.5 Transparency to Client

Reasoning

It is undesirable to have the clients handle failure, since this approach requires the programmer
writing the client to understand the failover mechanism. The failover could be misinterpreted eas-
ily and render it less than robust.

The infrastructure has no built-in multicast capability, and adding this feature would be expensive.
You can mimic a multicast with multiple unicasts, but this approach doubles the usage of the

 SOFTWARE ENGINEERING INSTITUTE | 23

communication system, and is therefore undesirable. (To review the pattern options, see Table 13
on page 20.)

Decision

Use the Proxy Handles Failure pattern.

Implications
1. The proxy service registers the service methods (for example, A.a, A.b, B.c, B.d) with the

name server.

2. The proxy service starts the first components, registering them under different names (AA.a,
AA.b, BB.c, and BB.d) and does likewise for the secondary components (AA’.a, AA’.b,
BB’.c, and BB’.d).

3. The client requests a service (A.a). This request causes the naming service to be invoked and
to return the access code for A.a, designated as access(A.a). Next, the client invokes
access(A.a).

4. The proxy service (A.a) determines that AA is the primary replica and returns access(AA.a)
to the client as a “forward request to.”

5. The client invokes access(AA.a) and continues to do so until AA fails.

6. When the health monitor detects a heartbeat failure in AA, it informs the proxy service.

7. The proxy informs the synchronous and asynchronous elements of the failure. These ele-
ments send their query and update requests to the newly promoted primary.

4.4.3.6 Start New Replica

This step is postponed, since, in this example, it is part of the start-up mechanism being explored
by another team.

4.4.3.7 Update Client Behavior After Transient Failure

A transient failure occurs when the primary fails and a backup is scheduled to take over. In our
case, the health monitor detects the failure and informs the proxy service. The proxy sends a for-
ward-request access code to the Synchronous Communication Service (SCS). If no requests are
underway, the SCS simply uses the new access code for all future requests. If a request is under-
way, the SCS executes a forward request with the new access code to the new Track Manager. It
is possible to get two replies: one reply from the failed Track Manager component, which was
inexplicably delayed beyond the failure notification, and one from the new Track Manager. If two
replies are received, the second one is discarded.

4.4.3.8 Update Client Behavior After Hard Failure

Reasoning

Scenario 2 lays the foundation for this choice (see Table 14 on page 20). We are willing to accept
degraded behavior and restart; therefore, pattern 3 is unnecessary and complicated. There is no
point in continuing to send updates without having a Track Manager available to receive them.

24 | CMU/SEI-2007-TR-005

Decision

We chose the Stop Sending Updates pattern, which, when there is no Track Manager, stops send-
ing updates until a new Track Manager becomes available.

Implications

The clients must be able to do two things: (1) accept an input informing them that the Track Man-
ager has failed and (2) stop sending updates.

4.4.3.9 Query Client Behavior After Transient Failure

We chose the same pattern as the update client (see Section 4.4.3.7) for simplicity’s sake.

4.4.3.10 Query Client Behavior After Hard Failure

We chose the same pattern as the update client (see Section 4.4.3.8) for simplicity’s sake.

4.4.4 Step 4, Substep 4 of ADD: Determine Relationship Between Patterns and
Drivers

A summary of the selected patterns is shown below in Table 16. In the table heading

• SC# refers to the scenario number that contributes to the selection decision.

• DC# refers to the previous design # (from iteration 1) that contributed to the selection.

Table 16: Pattern/Driver Mapping
Pattern Types Pattern Selected Architectural Driver

0 # Replicas Two Replicas Two Replicas (DC#3)

1 Restart Warm Standby Two Replicas (DC#3)

Quick Recovery (SC#1)

2 Deployment Distributed Capacity Restriction (DC#1)

3 Data Integrity Checkpoint +
Bundled Log Changes

Persistent Storage Service (DC#2)

Capacity Restrictions (DC#1)

Quick Recovery (SC#1)

Slow Recovery (SC#2)

4 Fault Detection Heartbeat Capacity Restriction (DC#1)

Quick Recovery (SC#1)

Other- see note below

5 Transparency to Clients Proxy Handles Failure Capacity Restriction (DC#1)

Other–see note below

6 New Replica N/A N/A

7 Update Client Behavior-
Transient

Proxy Handles Failure N/A

8 Update Client Behavior-
Hard

Stop Sending
Updates

Capacity Restriction (DC#1)

 SOFTWARE ENGINEERING INSTITUTE | 25

Table 16: Pattern/Driver Mapping (cont’d.)
Pattern Types Pattern Selected Architectural Driver

9 Query Client Behavior-
Transient

Proxy Handles Failure N/A

10 Query Client Behavior-
Hard

Stop Sending
Queries

Capacity Restriction (DC#1)

Note: There are numerous examples of decisions being made based on the architect’s experience
and preference rather than on a specific architectural driver. For example, in the fault detection
selection in Section 4.4.3.4, the architect considered it inappropriate for clients to detect failure.

4.4.5 Step 4, Substep 5 of ADD: Capture Preliminary Architectural Views

In this section, we present preliminary architectural views including
• a table of system elements and the ADD iteration in which it is developed

• a functional view of the architecture

• a sequence diagram for a query client’s access to data

4.4.5.1 List of the Elements

Table 17 lists the system elements and the ADD iteration in which they’re developed.

Table 17: System Elements and the ADD Iteration in Which They’re Developed
This Element Is Developed in This

ADD Iteration

1 Track Manager Requirement

2 Query clients Requirement

3 Update clients Requirement

4 Persistent storage Requirement

5 Track Manager A 1

6 Track Manager B 1

7 Synchronous communications 1

8 Asynchronous communications 1

9 Naming service 1

10 Registration service 1

11 Health monitor 2

12 Proxy server 2

13 CheckpointFileA 2

26 | CMU/SEI-2007-TR-005

Table 17: System Elements and the ADD Iteration in Which They’re Developed (cont’d.)
This Element Is Developed in This

ADD Iteration

14 CheckpointFileB 2

15 LogFileA 2

16 LogFileB 2

4.4.5.2 A Software Element View of the Architecture

Figure 4 shows a functional view of the software elements in the architecture and their relation-
ships.

Figure 4: Software Element View of the Architecture

 SOFTWARE ENGINEERING INSTITUTE | 27

4.4.5.3 Sequence Diagram

The sequence diagram for a query client’s access to data from client A is shown in Figure 5. The
figure depicts two sequences:

1. For the first request, the synchronous communication service sends the service request to the
proxy. The proxy returns a “forward request to A” message. The synchronous communica-
tion service caches the forward request to A and uses it for all future requests.

2. If A fails to issue a heartbeat to the health monitor, the latter informs the proxy that A has
failed. The proxy sends a “forward request to A’ ” message to the synchronous communica-
tion service. The service then forwards the request to A’, caches the request, and continues to
send messages to A’.

Figure 5: A Sequence Diagram of Failover from A to A’

4.4.6 Step 4.6 of ADD: Evaluate and Resolve Inconsistencies

In an architecture evaluation, the architect builds models to describe the system’s behavior. The
architect then analyzes these models to ensure that they satisfy the architectural drivers. In our
example, we develop a timeline showing the operation around the time of failure.

Figure 6 models the operation of the system over a time period that includes a failure.

28 | CMU/SEI-2007-TR-005

Figure 6: Timing Model

The following nine events, which occur in this order, are depicted in Figure 6.

1. A save is made of state updates to the persistent LogFile.

2. A heartbeat is detected a number of times after the state save.

3. A crash failure occurs in the Track Manager.

4. The health monitor detects the failure when a timeout occurs before the heartbeat.

5. The secondary Track Manager is promoted to primary.

6. The secondary service starts to respond to client requests, working off the backlog of re-
quests and giving slower response times.

7. The service returns to normal when the transient period of slow responses ends.

8. A new replica completes initialization and is ready to synchronize with the current primary
and become the secondary.

9. The new replica has completed any needed state updates, and the process of restoring the
service is completed.

Six important timing aspects of the system are shown in Figure 6:

• Tps: periodicity of the state LogFile save (2 seconds, see Section 4.4.3.3)

• Th: periodicity of the heartbeat (0.25 seconds, see Section 4.4.3.4)

• TrA: elapsed time taken to recover the state of A from persistent storage (0.8 seconds, see
Table 5 on page 11)

• TrB: elapsed time taken to recover the state of B from persistent storage (0.6 seconds, see
Table 5 on page 11)

• TrL: elapsed time to recover the LogFile from persistent storage (estimated at 0.2 seconds)

• Tus: elapsed time to update the state of A and B from the LogFile (estimated at 0.1 second)

 SOFTWARE ENGINEERING INSTITUTE | 29

The worst-case total time (T1) until the Track Manager recovery occurs when the failure is just
after a heartbeat and just before the next write of the updates to the LogFile. In this case, the time
would be

 T1 = Tps + Th + TrA + TrB + TrL + Tus

 T1 = 2 + 0.25 + 0.8 + 0.6 + 0.2 + 0.1 = 3.95

The result is an unacceptable time of 3.95 seconds.

4.4.6.1 Resolve Timing Inconsistencies

We can improve our models in several ways, and we must make tradeoffs among these proposed
improvements. Our main objective is to reduce the restart time from 3.95 seconds to less than 2
seconds, while ensuring that the communication load remains reasonable. We can modify the im-
portant timing aspects in these ways:

• Reduce the periodicity of the LogFile save to persistent storage. Synchronize the LogFile
save and the heartbeat such that the heartbeat occurs just after a save is initiated; they do not
need to have the same periodicity.

• Have the LogFile save to persistent storage serve as the heartbeat equivalent. Send the log
every 0.5 seconds. Extend the persistent storage element so that it recognizes that a failure to
receive the LogFile update triggers a request to inform the other necessary elements of a
failure (i.e., proxy, standby, clients).

• Make the three persistent storage accesses concurrent instead of sequential.

• Change the deployment decision to the second pattern, in which the primaries of A and B are
in different processors; hence, the failure of the processor with component A will be the
worst case (since it takes more time to recover its state).

• Change the style of the state update to option 5 in Table 11 (on page 19), in which the sec-
ondary maintains a model of the state by synchronizing with the primary during start-up. It
also receives a bundle of state updates periodically, thus obviating the need to read from p
sistent storage.

er-

• Reduce the size of the state to be saved for components A and B by recomputing some state
data on restart.

Reasoning
1. The fault-tolerance designer is reluctant to choose alternative 2, 5, or 6, since they entail re-

questing changes to the previous design. The expert will only do so if there is no other rea-
sonable way to reduce the time within his or her direct control. The expert would propose
such tradeoffs only after reviewing other alternatives.

2. The LogFile save to persistent storage can occur every second and be synchronized to occur
just before every fourth heartbeat. This scheme reduces the terms (Tps + Th) from 2.25 sec-
onds to 1 second. This measure is a gain of 1.25 seconds, which would reduce the response
to 2.7 seconds, which is still not good enough. This measure could be further improved by
reducing the periodicity to 0.5 seconds, but that option is rejected. It would cause too much
additional load on the communication mechanism.

30 | CMU/SEI-2007-TR-005

3. Access to persistent storage for all three files takes (TrA + TrB + TrL) or 1.6 seconds, if done
sequentially. However, if accesses are concurrent using asynchronous communications, in
theory they will take only 0.8 seconds, which is the time required to get the persistent state
for component A. However, a detailed analysis of the persistent storage shows that the three
concurrent requests will share some resources and take 1.0 seconds. This reduction is still 0.6
seconds, which leaves us with a 2.1-second response—still not good enough.

4. The deployment decision is changed to the second option of having each component A and B
in a separate processor. Hence, the worst-case access to persistent storage occurs for compo-
nent A and is 0.8 seconds. If this is still done concurrently with the Logfile access, the total
time for both will be .85 seconds. The savings in the previous step are now invalidated, and
the 1.6 seconds now takes 0.85 seconds, which yields a 1.95-second response. This response
does not provide quite enough of a margin.

5. The only way within the architect’s control to further resolve this problem is to select alter-
native D and change the data integrity style. Taking this approach assumes that the primary
and secondary states for A and B will not diverge in any way, which is outside of the archi-
tect’s control. The architect then approaches those responsible for the previous design and
explains the problem and the options. The designer team agrees to reduce the state upgrade
time for component A to 0.6 seconds and the concurrent access with the Logfile to 0.65
seconds This change represents a further savings of 0.2 from the previous result and creates a
response time of 1.75 seconds, which is within a reasonable margin.

4.4.6.2 Summary of Timing Decisions

Table 18 summarizes the timing decisions.

Table 18: Summary of Timing Decisions
Description Initial Time

Interval
Final Time Interval

Tps Save FileCheckPoint 2.0 1.0 (see Note 1)
Th Heartbeat 0.25 0.25
TrB Recover Checkpoint for B 0.6 0.0 (see Note 2)
TrA Recover Checkpoint for A 0.8 0.65 (see Note 3)
TrL Recover LogFile 0.2 0.2
Tus Update state from LogFile 0.1 0.1
T Recovery time 3.95 1.75
 Checkpoint State 60 60

Notes:

1. The heartbeat and checkpoint save are synchronized together (reasoning point 2 in Sec-
tion 4.4.6.1).

2. Since A and B are in separate processors, we only have to recover the state of one of
them for a single failure (reasoning point 4 in Section 4.4.6.1).

3. The state recovery and checkpoint recovery are performed concurrently (reasoning point
4 and 5 in Section 4.4.6.1).

 SOFTWARE ENGINEERING INSTITUTE | 31

4.5 STEP 5 OF ADD: INSTANTIATE ARCHITECTURAL ELEMENTS AND ALLOCATE
RESPONSIBILITIES

4.5.1 Primary A and B

The primary and backup elements of both A and B have the same behavior. The behavior of A
alone is described here.

• The element A receives messages from both query and update clients. It updates its state
based on the update client messages and replies to queries from the query clients.

• Element A is normally deployed on the same processor as the backup copy B’ of the element
B. Just after a failure occurs to B, B’ is promoted, and both A and B occupy the same proc-
essor until a new version of B is started. The process of switching the primary B to the just-
started element B is not defined.

• Element A sends a heartbeat to the health monitor every 0.25 seconds.

• Element A copies its state to CheckpointFileA every minute.

• Element A accumulates the state changes made due to update client messages and writes
them to LogFileA every 1.0 seconds. This write is synchronized with sending the check-
point.

• The start-up of A and A’ was not addressed, since there is another team tackling this issue.

• The proxy element will receive a request that both copies of the element A have failed, will
stop sending updates, and will notify the necessary actors.

4.5.2 Persistent Storage

There are four persistent storage files: CheckpointA, CheckpointB, LogFileA, and LogFileB.
All new values of these files overwrite the old values.

4.5.3 Health Monitor

The health monitor uses a timer to check whether it has received the heartbeat from A, B, A’, and
B’. If it fails to receive a heartbeat before the timer expires, it notifies the proxy.

4.5.4 Asynchronous Communication

The asynchronous communication mechanism receives a request from the update clients to a
method (for example, A.a), and directs the request to the appropriate element.
1. The mechanism sends the name server the method A.a and receives the access code to the

proxy element for A.a.

2. The mechanism sends the update message to the proxy element A.a.

3. When the mechanism receives the forward request for A.a to send the message to AA.a, it
sends the request to AA.a and caches the handle for AA.a.

4. Any subsequent requests are made directly to the AA.a handle.

5. When a failure occurs, the mechanism receives the forward request to AA’.a and uses that
handle for subsequent requests.

32 | CMU/SEI-2007-TR-005

6. If AA.a fails and there is no standby, the mechanism informs the update client to stop send-
ing updates.

4.5.5 Synchronous Communication

The synchronous communication element receives requests from the query clients and has almost
the same behavior as the asynchronous communication element. The only difference is that it
blocks the query client until it receives the answer to the query, which it then sends to the query
client.

4.5.6 Proxy

The proxy element does most of the work in causing a smooth transition to the backup when the
primary fails. It does the following:
1. The proxy service registers all the methods associated with both A and B with the naming

service.

2. The proxy service starts AA, AA’, BB, and BB’ and registers all their methods with the nam-
ing service. It creates a cache by mapping the names used by the clients (e.g., A.a) and the
names created by the elements (e.g., AA.a and AA’.a). It determines which element is pri-
mary and which is secondary.

3. The proxy service is called by either the synchronous or asynchronous communication ele-
ment when a client requests a service; for example, A.a. It replies with a “forward request” to
AA.a if AA is the primary.

4. When the health monitor signals the proxy that the primary (e.g., AA) has failed, it sends a
forward request to both the synchronous and asynchronous communication elements to ac-
cess all the standby methods (e.g., AA’.a), thus promoting AA’ to be primary.

4.5.7 Update Clients

The failure of a primary component (e.g., A) and the switchover to A’ are transparent to the up-
date clients. Any updates sent during the window between failure and restoration are lost. But the
timing window has been analyzed to be small enough for the Track Manager to continue working
even with these lost messages. When the primary component fails and there is no backup, the up-
date client will be notified and will stop sending updates until the service is restarted.

4.5.8 Query Client

The failure of the primary component when there is a backup is once again transparent to the up-
date clients. They will have to wait slightly longer for an answer to their query, but that time has
been evaluated as acceptable. When the primary component fails and there is no backup, the
query client will be notified and will stop requesting queries.

The interfaces have been defined throughout Step 4 in Section 4 but are captured here for consis-
tency and convenience. Note that some of the interfaces that were defined in the first iteration (see
Section 3.2) are not repeated in Table 19.

 SOFTWARE ENGINEERING INSTITUTE | 33

Table 19: Summary of Interfaces
From
Element

To Element Interface Timing
Conditions

Descriptive
Sections

Primary A CheckpointA Update state 60 seconds 4.5.1

Primary A LogFileA Log changes 1 second 4.5.1

Primary A Health Monitor Heartbeat 0.25
seconds

4.5.1

Primary B CheckpointB Update state 60 seconds 4.5.1

Primary B LogFileB Log changes 1 second 4.5.1

Primary B Health Monitor Heartbeat - 4.5.1

CheckpointA Primary A Update state During
recovery

4.5.1

LogFileA Primary A Log changes During
recovery

4.5.1

CheckpointB Primary B Update state During
recovery

4.5.1

LogFileB Primary B Log changes During
recovery

4.5.1

Health
Monitor

Proxy Primary fail-
ure

Within 1
second of
detection

4.5.3

Query Client Synchronous
Communica-
tion

Request for
service

5 per second 4.5.8

Proxy Naming Registration
of A, B, A’,
B’ services

During
start-up

4.5.6

Proxy Synchronous
Communica-
tion

Primary
failed (A or
B)

During
recovery

4.5.6

Proxy Asynchronous
Communica-
tion

Primary
failed (A or
B)

During
recovery

4.5.6

4.6 STEP 7 OF ADD: VERIFY AND REFINE REQUIREMENTS AND MAKE THEM
CONSTRAINTS

In Step 7, we verify that the decomposition of the fault-tolerance services supporting the Track
Manager element meets the functional requirements, quality attribute requirements, and design
constraints, and we show how those requirements and constraints also constrain the instantiated
elements.

34 | CMU/SEI-2007-TR-005

The architectural drivers are shown once more in Table 20 and were used in one or more pattern
selections (except for scenario 3). The restart scenario was not explicitly used, since the restart
design was being done in parallel and a later merging was anticipated.

Table 20: Architectural Drivers
Architectural

Drivers
Defined in Section Applies to Pattern

Choices

1 Scenario 1
Quick Recovery

2.3 Restart, Deployment,
Data Integrity, Fault
Detection,

2 Scenario 2
Slow Recovery

2.3 Data Integrity

3 Scenario 3
Restart

2.3 Not used

4 Requirement 1
Track Manager
Functionality

2.1 Restart

5 Requirement 2
Checkpoint to
Persistent Storage

2.1 Deployment

6 Design Constraint 1
Spare Capacity

2.2 Fault Detection

7 Design Constraint 2
Two Replicas

2.2 Restart, Deployment

8 ADD Step 1, #1
Deployment
Characteristics

3.2 Restart, Deployment,
Data Integrity

9 ADD Step 1, #2
Communication
Mechanisms

3.2 Update Client
Behavior

Query Client Behavior

10 ADD Step 1, #3
Checkpoint Timing

3.2 Data Integrity

Notes:

1. The breakdown of the timing requirements allocation derived from scenario 1 is shown in
Table 18 on page 31.

2. The additional capabilities required by the elements defined prior to this step (Track
Manager, query clients, update clients, persistent storage, synchronous communications,
and asynchronous communications) are all defined in Section 4.5. The naming service
and registration service required no extensions.

3. The responsibilities of the two new elements (proxy service) and (health monitor) are
fully described in Section 4.5.

 SOFTWARE ENGINEERING INSTITUTE | 35

4.7 STEP 8 OF ADD: REPEAT STEPS 2 THROUGH 7 FOR THE NEXT ELEMENT OF
THE SYSTEM YOU WISH TO DECOMPOSE

Now that we have completed Steps 1 through 7, we have a decomposition of the fault-tolerance
service (specifically, the Track Manager system element). We generated a collection of responsi-
bilities, each having an interface description, functional requirements, quality attribute require-
ments, and design constraints. You can return to the decomposition process in Step 2 where you
select the next element to decompose. In our case, we do not have child elements to further de-
compose.

36 | CMU/SEI-2007-TR-005

5 Summary of the Architecture

The architecture developed up to this point is described in this section. Also included are remind-
ers about the parallel designs underway that this architecture must be resolved with and the issues
that must still be tackled.

5.1 ARCHITECTURE SUMMARY

A summary of the design is given below.

• The Track Manager has two components (A and B), deployed on two hardware platforms.
Each hardware platform contains the primary of one component and the secondary of the
other component. The failure of A and B has equivalent activities, and the failure of Z=A or
Z=B is discussed below.

• The primary and secondary components (A, A’ and B, B’) will give a heartbeat every 0.25
seconds to a health monitor.

• A persistent storage mechanism is required to save the state of the components every minute.
Each component will write its state separately to persistent storage as CheckpointA and
CheckpointB. These writes are synchronized to occur with the heartbeat.

• Each primary component will cumulate all its update changes for one second and then send
the bundle to a LogFile in persistent storage. Each component will synchronize the sending
of its LogFile with the heartbeat. There will be a LogFileA and a LogFileB.

• When the health monitor determines that a failure in Z has occurred, it informs the proxy
service and the standby component Z’ of the failure. The proxy service also sends a “forward
request” to both the asynchronous and synchronous communication components indicating
that Z’ is the new primary.

• When the standby component Z’ receives the signal that its primary has failed, it asynchro-
nously reads the CheckpointZ and LogFileZ from persistent storage. It computes the new
state of Z, which it saves to persistent storage. It is now ready to respond to client requests.

• When the synchronous communication component receives the “forward request” signal
from the proxy, it sends its next update to the new primary. It does not know (or care) if pre-
vious updates were received.

• When the asynchronous communication component receives the signal from the proxy, one
of the following situations occurs:

− It has no active requests, so it sends the next update to the new primary.
− It has an active update underway, so it sends the current request to the new primary.

• When a new standby replica is started, a primary is already in place.

• When a new replica is started and promoted to primary, it reads CheckpointZ and
LogFileZ and updates the state of A. It then proceeds to handle update requests but ignores
query requests. Many updates are indeterminate because of the downtime. Some help from
the operator is needed to bring the system back to a reasonable state, at which time queries

 SOFTWARE ENGINEERING INSTITUTE | 37

will be resumed. This design has many overlaps with the initial start-up design, but the de-
tails of the start-up are not part of this design effort.

5.2 DESIGN ISSUES BEING RESOLVED ELSEWHERE

Some designs are being resolved elsewhere:

• the mechanisms for the persistent storage

• the start-up procedures for A and B and their coordination

5.3 REMAINING DESIGN ISSUES

This report provides an overview of how to make the Track Manager fault tolerant and to satisfy
the architectural drivers, especially the end-to-end timing requirement. Some views of the soft-
ware have been captured, but views are missing, such as class diagrams, layered views, container
views, use cases, and many sequence diagrams detailing the information embedded in the various
“Reasoning” and “Implications” sections of Section 4.4.3. In particular, a state transition diagram
that shows the details of how the software elements respond together to provide the desired be-
havior is missing. This model is the only way to ensure that there are no “timing windows” in the
behavior.

In addition, four design issues need to be addressed:

• How do the health monitor and proxy elements recover from failures in the software or
hardware, and how they are distributed?

• The proxy service does not know which clients have a service request underway and which
do not. How does a client react to a “forward request” when it has no request underway?

• How does the health monitor know about the proxy?

• How does the system respond to a failure in a secondary component?

38 | CMU/SEI-2007-TR-005

6 Comments on the Method

While working with the example application described in this report, we made the following ob-
servations:

1. The person doing the design was familiar with the fault-tolerance concerns and alternative
patterns used in the example. This designer was also familiar with the ways of reasoning
about selecting between alternatives and the timing model needed to evaluate the effective-
ness of the choices.

2. The documentation of the ADD results is awkward at times, since we documented develop-
ment according to the structure of the ADD method. The result was rather clumsy documen-
tation with Section 4 having four levels of indentation and the other sections having only one
or two. However, in most real software architecture description documents, the documenta-
tion structure will not be dependent on the development method (ADD) but rather on the
most effective way of capturing the views developed.

3. The developer chose to develop the architecture for fault tolerance in a single iteration,
which resulted in too many alternative patterns to represent comfortably as a matrix. The
pros and cons of each pattern were also not detailed explicitly, but were embedded within the
rationale for making a selection within each pattern alternative.

4. ADD weakly implies that the development of an architecture is done sequentially—at each
iteration, an element is chosen for design elaboration, all architectural drivers are known be-
fore starting the design of the element, and this iteration’s results are then used in the next it-
eration. In development of large-scale architectures, this in unlikely to happen. Different ar-
chitects (or architecture teams) will be assigned to different elements of the architecture and
will work in parallel; that situation will require cooperation between the architects working
on different elements and an eventual merging of the resulting designs.

5. The author placed sufficient information about the discriminating parameters in the results of
the first iteration, especially Table 4 and Table 5. In practice, this is not usually the case;
rather, the fault-tolerance expert would discover, during Step 4 when evaluating some pat-
tern, that sufficient information was not available and would have to estimate the values as
described in ADD Section 7.1, points 2a and 2b.

 SOFTWARE ENGINEERING INSTITUTE | 39

40 | CMU/SEI-2007-TR-005

7 Conclusion

This report demonstrates how an experienced designer can use the ADD method to design fault
tolerance into a system to satisfy some architectural drivers consisting of requirements, stake-
holder-defined scenarios, and design constraints. The concerns, tactics, and patterns listed in the
various tables in Section 4 are typical of those to be considered for such a design. In cases where
the architectural drivers are more challenging, the design decisions change, but the basic approach
can still be followed. Second and third iterations through the design cycle may be necessary. This
report also clearly distinguishes between choosing well-known patterns during the first iteration
and the alternatives for improvement during the second iteration. In the first iteration, straightfor-
ward choices were made from predefined patterns; whereas in the second, alternatives included
changing a number of design aspects to achieve the improved qualities.

 SOFTWARE ENGINEERING INSTITUTE | 41

42 | CMU/SEI-2007-TR-005

Glossary

architectural
driver

 An architectural driver is any functional requirement, de-
sign constraint, or quality attribute requirement that has a
significant impact on the structure of an architecture.

architectural
patterns

 Architectural patterns are well-known ways to solve re-
curring design problems. For example, the Layers and
Model-View-Controller patterns help to address design
problems related to modifiability. Patterns are typically
described in terms of their elements, the relationships be-
tween elements, and usage rules.

architectural
tactics

 Architectural tactics are design decisions that influence
the quality attribute properties of a system. For example, a
Ping-Echo tactic for fault detection may be employed dur-
ing design to influence the availability properties of a sys-
tem. The Hide Information tactic may be employed during
design to influence the modifiability properties of a sys-
tem.

candidate
architectural
driver

 Candidate architectural drivers are any functional re-
quirements, design constraints, or quality attribute re-
quirements that have a potentially significant impact on
the structure of an architecture. Further analysis of such
requirements during design may reveal that they have no
significant impact on the architecture.

design concept A design concept is an overview of an architecture that
describes the major types of elements that appear in the
architecture and the types of relationships between them.

design concern Design concerns are specific problem areas that must be
addressed during design. For example, for a quality attrib-
ute requirement regarding availability, the major design
concerns are fault prevention, fault detection, and fault
recovery. For a quality attribute requirement regarding
availability, the major design concerns are resource de-
mand, resource management, and resource arbitration
[Bass 2003].

design
constraints

 Design constraints are decisions about the design of a sys-
tem that must be incorporated into any final design of the
system. They represent a design decision with a predeter-
mined outcome.

 SOFTWARE ENGINEERING INSTITUTE | 43

discriminating
parameter

 Discriminating parameters are characteristics of patterns
that you evaluate to determine whether those patterns help
you achieve the quality attribute requirements of a system.
For example, in any restart pattern (e.g., Warm Restart,
Cold Restart), the amount of time it takes to do a restart is
a discriminating parameter. For patterns used to achieve
modifiability (e.g., layering), a discriminating parameter is
the number of dependencies that exist between elements
in the pattern.

functional
requirements

 Functional requirements specify what functions a system
must provide to meet stated and implied stakeholder needs
when the software is used under specific conditions
[ISO/IEC 2001].

interface The interface for an element refers to the services and
properties required and provided by that element. Note
that interface is not synonymous with signature. Inter-
faces describe the PROVIDES and REQUIRES assump-
tions that software elements make about one another. An
interface specification for an element is a statement of an
element’s properties that the architect chooses to make
known [Bass 2003].

patterns See Architectural Patterns.

property A property is additional information about a software
element such as name, type, quality attribute characteris-
tic, protocol, and so forth [Clements 2003].

quality attribute A quality attribute is a property of a work product or
goods by which its quality will be judged by stakeholders.
Quality attribute requirements such as those for perform-
ance, security, modifiability, reliability, and usability have
a significant influence on the software architecture of a
system [SEI 2007].

quality attribute
requirements

 Quality attribute requirements are requirements that indi-
cate the degrees to which a system must exhibit various
properties.

relationship A relationship defines how two software elements are as-
sociated or interact with one another.

requirements Requirements are the functional requirements, design con-
straints, and quality attribute requirements a system must
satisfy for a software system to meet mission/business
goals and objectives.

responsibility A responsibility is functionality, data, or information that
is provided by a software element.

role A role is a set of related responsibilities [Wirfs-Brock
2003].

44 | CMU/SEI-2007-TR-005

software
architecture

 The software architecture of a program or computing sys-
tem is the structure(s) of the system, which comprise
software elements, the externally visible properties of
those elements, and the relationships among them [Bass
2003].

software
element

 A software element is a computational or developmental
artifact that fulfills various roles and responsibilities, has
defined properties, and relates to other software elements
to compose the architecture of a system.

stakeholder A stakeholder is someone who has a vested interest in an
architecture [SEI 2007].

tactics See Architectural Tactics.

 SOFTWARE ENGINEERING INSTITUTE | 45

46 | CMU/SEI-2007-TR-005

Bibliography

URLs are valid as of the publication date of this document.

[Avizienis 2004]
Avizienis, Algirdas; Laprie, Jean-Claude; Randell, Brian; & Landwehr, Carl Source. “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing.” IEEE Transactions on Dependable
and Secure Computing 1, 1 (January/March, 2004): 11-33.

[Bass 2003]
Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice. Reading, MA: Addison-
Wesley, 2003.

[Clements 2003]
Clements, P.; et al. Documenting Software Architectures Views and Beyond. Reading, MA:
Addison-Wesley, 2003.

[ISO/IEC 2001]
International Organization for Standardization and International Electrotechnical Commission.
ISO/IEC 9126-1:2001, Software Engineering–Product Quality–Part 1: Quality Model.
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22749 (June 15,
2001).

[OMG 1999]
Object Management Group (OMG). Fault Tolerant CORBA. http://www.omg.org/docs/orbos
/99-12-08.pdf (December 1999).

[SEI 2007]
Software Engineering Institute. Software Architecture Glossary.
http://www.sei.cmu.edu/architecture/glossary.html (2007).

[Siewiorek 1992]
Siewiorek, Daniel & Swarz, Robert. Reliable Computer Systems: Design and Evaluation. Burling-
ton, MA: Digital Press, 1992.

[Wirfs-Brock 2003]
Wirfs-Brock, Rebecca & McKean, Alan. Object Design Roles, Responsibilities, and Collabora-
tions. Boston, MA: Addison-Wesley, 2003.

[Wojcik 2006]
Wojcik, R.; Bachmann, F.; Bass, L.; Clements, P.; Merson, P.; Nord, R.; & Wood, B. Attribute-
Driven Design (ADD), Version 2.0 (CMU/SEI-2006-TR-023). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tr023.html.

 SOFTWARE ENGINEERING INSTITUTE | 47

http://www.sei.cmu.edu/architecture/glossary.html
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22749
http://www.omg.org/docs/orbos
http://www.sei.cmu.edu/publications/documents/06.reports/06tr023.html

48 | CMU/SEI-2007-TR-005

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruc-
tions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.
Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

February 2007
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
A Practical Example of Applying Application-Driven Design (ADD), Version 2.0

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
William G. Wood

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2007-TR-005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
ESC-TR-2007-005

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report describes an example application of the Attribute-Driven Design (ADD) method devel-
oped by the Carnegie Mellon® Software Engineering Institute. The ADD method is an approach to
defining a software architecture in which the design process is based on the quality attribute re-
quirements the software must fulfill. ADD follows a recursive process that decomposes a system or
system element by applying architectural tactics and patterns that satisfy its driving quality attribute
requirements.

The example in this report shows a practical application of the ADD method to a client-server sys-
tem. In particular, this example focuses on selecting patterns to satisfy typical availability require-
ments for fault tolerance. The design concerns and patterns presented in this report—as well as the
models used to determine whether the architecture satisfies the architectural drivers—can be ap-
plied in general to include fault tolerance in a system. Most of the reasoning used throughout the de-
sign process is pragmatic and models how an experienced architect works.

14. SUBJECT TERMS

attribute-driven design, ADD, architectural drivers, software architec-
ture, architecturally significant requirements, decomposition

15. NUMBER OF PAGES
58

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-
18 298-102

	A Practical Example of Applying Attribute-Driven Design (ADD), Version 2.0
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 SUMMARY OF ADD
	1.2 EXAMPLE PROCESS

	2 System Definition
	2.1 FUNCTIONAL REQUIREMENTS
	2.2 DESIGN CONSTRAINTS
	2.3 QUALITY ATTRIBUTE REQUIREMENTS

	3 Applying ADD
	3.1 STEP 1 OF THE ADD METHOD: CONFIRM THERE IS SUFFICIENT REQUIREMENTS INFORMATION
	3.2 RESULTS OF THE FIRST ADD ITERATION
	3.3 ORGANIZATIONAL CONSIDERATIONS

	4 ADD Second Iteration
	4.1 STEP 1 OF ADD: CONFIRM THERE IS SUFFICIENT REQUIREMENTS INFORMATION
	4.2 STEP 2 OF ADD: CHOOSE AN ELEMENT OF THE SYSTEM TO DECOMPOSE
	4.3 STEP 3 OF ADD: IDENTIFY CANDIDATE ARCHITECTURAL DRIVERS
	4.4 STEP 4 OF ADD: CHOOSE A DESIGN CONCEPT THAT SATISFIES THE ARCHITECTURAL DRIVERS
	4.4.1 Step 4, Substep 1 of ADD: Identify Design Concerns
	4.4.2 Step 4, Substep 2 of ADD: List Alternative Patterns for Subordinate Concerns
	4.4.2.1 Restart
	4.4.2.2 Deployment
	4.4.2.3 Data Integrity
	4.4.2.4 Health Monitoring
	4.4.2.5 Transparency to Clients
	4.4.2.6 Start New Replica
	4.4.2.7 Update Client Behavior After Transient Failure
	4.4.2.8 Update Client Behavior After a Hard Failure
	4.4.2.9 Query Client Behavior After Transient Failure
	4.4.2.10 Query Client Behavior After a Hard Failure

	4.4.3 Step 4, Substep 3 of ADD: Select Patterns from the List
	4.4.3.1 Restart

	5 Summary of the Architecture
	5.1 ARCHITECTURE SUMMARY
	5.2 DESIGN ISSUES BEING RESOLVED ELSEWHERE
	5.3 REMAINING DESIGN ISSUES

	6 Comments on the Method
	7 Conclusion
	Glossary
	Bibliography

